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Abstract

We study whether Algorithmic Market Makers using Q-learning produce competitive or

supra-competitive prices in a quote-driven asset market. We show, through simulations and

analytically, that the result depends on the way the algorithm is set up. A basic Q-learning

algorithm leads to loss-free prices and is, therefore, not fit for trade. Carefully choosing the

exploration and learning parameters leads to less extreme prices, but still far away from

the competitive ones. When we endow the algorithm with a basic understanding of the

market and basic information about outstanding quotes, the Q-learning algorithms produce

competitive prices.
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1 Introduction

Does the use of algorithms to price financial assets lead to competitive or supra-competitive

prices? The answer that we provide in this paper is: it depends on the design of the algorithm.

A basic Q-learning algorithm produces loss-free prices, which essentially makes the algorithm

unsuitable for trading; a Q-learning algorithm with some carefully chosen learning and exper-

imentation parameters leads to pricing somewhere in between the competitive and loss-free

pricing levels, which can be viewed as a form of supra-competitive pricing; however, endow-

ing the algorithm with the minimal market understanding that pricing more aggressively than

competing market makers results in capturing the entirety of the trading activity, together with

minimal information about the market prices, leads to the algorithms setting competitive prices.

Overall, while the existing literature on machine learning in economics and finance emphasizes

the negative effects of the use of algorithmic pricing in terms of supra-competitive prices (often

linked to tacit collusion), our work shows that there is nothing intrinsic to the use of machine

learning that leads to supra-competitive prices; when supra-competitive prices arise, they are

not due to collusion but to the avoidance of losses in a setting in which fundamental values are

not deterministically defined.

Our work is based on the seminal paper by Glosten and Milgrom (1985). We consider a

one-period version of the model and we change it in one fundamental dimension: while in the

original model market makers set competitive quotes (ask and bid prices) to trade with informed

and uninformed traders, in our work, prices are set by Algorithmic Market Makers (AMMs)

that use a Q-learning algorithm. With Q-learning, a specific example of reinforcement learning,

these AMMs work as follows. They attach a specific value to each possible ask and bid price and

then proceed by trial and error over the course of time. Sometimes they “exploit” (choosing the

price that has the highest attached value) and sometimes they “explore” (experimenting with

random prices). The payoff that they receive after setting prices is the feedback (the immediate

reward) used to update the value that they attach to prices; they then use the updated values

to choose the new prices at the next trading time.

In our first version of the model, AMMs only update the Q-value for the specific ask and

bid they have chosen. We find that, eventually, they choose loss-free prices; that is, they choose

an ask weakly higher than the maximum value of the asset and a bid weakly lower than the

minimum value of the asset. At these prices, informed traders have no incentive to trade. Noise

traders only trade because we assume that they are perfectly price inelastic, otherwise we would

have a complete market breakdown: a no-trade result. These prices are obviously extreme and
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show that this version of Q-learning cannot be used for market making. To make this point,

we also let one AMM compete with a “human” market maker who sets a fixed ask (bid) price

above (below) the competitive ask (bid) price equilibrium. The AMM never trades, thus leaving

all the profits to the other market maker. These results are surprising, perhaps even unsettling.

One could have imagined that, through reinforcement, AMMs would learn to “undercut” one

another and, at least, to undercut a market maker with a fixed price, thus making profits. Here,

instead, we have AMMs that are completely crowded out of the market. While surprising, this

loss-free pricing result has a simple explanation, which we prove formally. Intuitively, it can be

understood as follows. Any pricing that would not be loss-free would result in the possibility of

making a loss if this market maker were to trade and the realization of the fundamental value

were unfavorable. By the rule of the Q-learning algorithm, this implies that any pricing that is

not loss-free will eventually (after sufficiently many unlucky draws) become associated with a

negative Q-value, at which point, in the absence of experimentation, it will no longer be used.

Our result is related to the maxmin result obtained by Sarin and Vahid (1999) in an individual

decision-making problem. In fact, that result can be immediately used to prove that one AMM

would choose loss-free prices against a fixed-price market maker, whereas a novel analysis is

needed to prove that a similar result holds when many AMMs compete in the market.

After showing that modifying some aspects of the Q-learning algorithm, such as the learning

and exploration rates, helps to have less extreme, but still supra-competitive, prices (due to the

same mechanism underlying the maxmin result, and not to collusion), we move to a Q-learning

model in which AMMs do not update the Q-values only for the prices they chose, but also for

other prices for which they can make an obvious inference. For instance, if an AMM sells at an

ask price of 100, they realize that they would have also sold at lower prices, and, thus, update

the Q-values for all prices less than or equal to 100. Understanding that traders happy to buy

at a specific ask price would also be happy to buy at a lower price is a minimal requirement.

We call this model “counterfactual updating”. While this model seems perfectly natural in our

specific pricing problem, it has also been used, more broadly, in Game Theory, to study learning

by players who may think about the counterfactual choices of their opponents (see, e.g., the

“Experience-Weighted Attraction” (EWA) model of Camerer and Ho, 1999). In this model,

we show, both through simulation and analytical results (making use of mathematical results

in the dynamics of stochastic approximation algorithms - see Benäım, 1999) that algorithmic

prices converge to the competitive equilibrium prices. Furthermore, in the case in which there is

only one AMM competing with a “human” market maker who uses the simple pricing strategy

of a fixed ask price (set higher than the competitive ask price) and of a fixed bid price (set
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lower than the competitive bid price), the AMM does exactly what one would hope they do:

they undercut the competitor and earn all trading profits. The reason for these results is that,

with counterfactual updating (and vanishing small weights on the current feedback/reward),

the AMMs obtain a lot of information and one can reason in terms of expected profits, thereby

leading the AMMs to assess that the undercutting pricing policy would be strictly beneficial as

long as the current market price is supracompetitive. These results are obtained using conditions

on the learning rate that are very common in machine learning. Indeed, they are the Robbins-

Monro conditions also used in the classic proof of convergence of Q-learning to the optimal

policy by Watkins and Dayan (1992). In contrast with their work, however, in our model, we do

not need experimentation for our results. Intuitively, counterfactual updating already provides

enough information to the algorithms that they do not need to experiment to learn to undercut.

Our work contributes to the finance literature with an application of machine learning to a

classic market microstructure problem. In studying how using Q-learning affects prices in the

classic Glosten and Milgrom (1985) model, we also use insights from the literature on learning

in Decision Theory (Sarin and Vahid, 1999) and in Game Theory (e.g., Camerer and Ho, 1999),

and base some of our proofs on mathematical results in stochastic approximation (Benäım,

1999) The closest paper to ours in terms of research question is Colliard et al. (2022). The

models are quite similar, although we base our work on the standard Glosten and Milgrom

(1985) model with informed and noise traders, whereas they have one type of trader but there

are common and private values. The results are markedly different. They insist on the supra-

competitive prices outcome, which they show through simulations (“an experimental approach”

to use the authors’ terminology) and attribute these results to limited learning capacity. In

contrast, we show that prices vary from one extreme, the loss-free outcome, to another, the

competitive equilibrium outcome, depending on how the Q-learning algorithm is designed. Our

results are analytical and not only shown through simulations. The paper by Dou et al. (2024)

has in common with our work that they too are interested in the (non-) competitive outcomes

of Q-learning in a market with private information; however, they focus on AI informed traders,

and not on market makers. Cartea et al. (2022) study learning algorithms in a market with no

private information (essentially a Bertrand game with complete information) and their interest

is in the effect of the tick size on market outcomes.

More broadly, in the economics literature, there has been interest in algorithmic pricing

in oligopoly markets. One notable example is Calvano et al. (2020). In their setup with

history-dependent states, they find that “algorithms consistently learn to charge supracompet-

itive prices, without communicating”. In a similar setup to that of Calvano et al. (2020), Asker
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et al. (2024) study how “synchronous” learning leads to prices close to the competitive levels.

2 The Model

We consider a sequential trade model based on the seminal paper of Glosten and Milgrom

(1985). Following Easley et al. (1997) and Cipriani and Guarino (2014), we consider a multiple-

day version of the model. A single risky asset is traded in a specialist market over multiple

days by informed and noise traders. The novelty of our model is that the specialist (also known

as a market maker) sets ask and bid prices using a Q-learning algorithm. Given our purposes,

rather than considering the entire sequence of trades in each day, we will specialize the analysis

to the first trading time of each day.

2.1 The Asset

There is one risky asset, and its fundamental value in day d (d = 1, ..., D) is denoted by V d.

The asset value does not change during the day, but can change from one day to the next. Each

day, with probability δ, the value of the asset, V d, is equal to vH and, with probability 1− δ, is

equal to vL, where vH > vL ≥ 0 and δvH + (1− δ)vL = v.1 At the end of the trading day, the

value of the asset is known to all market participants.

2.2 The Market

The asset is exchanged in a specialist market. Its price is set by market makers who interact

with a sequence of traders. Each trading day consists of T trading times, also referred to as

trading periods. As we said, for our purposes, we will consider only one period; this is equivalent

to setting T = 1.

Each day, a trader is randomly chosen to act and can buy, sell, or decide not to trade.

Each trade consists of the exchange of one unit of the asset for cash. The trader’s action space

is, therefore, A ={−1, 0, 1}, where 1 and -1 are interpreted as the trader buying one unit and

selling one unit of the asset, respectively. We denote the action of the trader in day d by Xd.

1Note that vH and vL are the realizations of the random variable V d. Throughout the text, we will denote

random variables with capital letters and their realizations with lowercase letters.
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2.2.1 The Market Makers

Each day d, N market makers, indexed by i = 1, ..., N , set the prices at which a trader can buy

or sell the asset.

We denote market maker i’s ask price (the price at which a trader can buy) by adi and,

similarly, the bid price (the price at which a trader can sell) by bdi . Traders trade at the best

ask and bid prices, denoted as follows:

ad = min{ad1, ..., adN} and bd = max{bd1, ..., bdN}. (1)

In the case that there are multiple market makers quoting the best price, and a trader wants

to trade at that price, one market maker is randomly chosen, with equal probability, from the

set of market makers quoting that price. We denote the market maker with the prevailing ask

and bid quotes by i∗ask and i∗bid. Each day, market maker i’s trade is equal to

Φd
i =


1 if Xd = −1 and i = i∗ask,

−1 if Xd = 1 and i = i∗bid,

0 otherwise.

(2)

Market maker i’s profit on day d is equal to

πd
i = (adi − vd)1{Φd

i=−1} + (vd − bdi )1{Φd
i=1}, (3)

where 1{.=.} is the indicator function.

2.2.2 The Traders

There is an uncountable number of traders. Each trader is chosen to take an action only once.

Traders are of two types: informed and noise. The trader’s own type is private information.

On any day d, an informed trader is chosen to trade with probability µ and a noise trader with

probability 1 − µ, with µ ∈ (0, 1). Noise traders buy with probability η
2 , sell with probability

η
2 , and do not trade with probability 1− η (with 0 ≤ η ≤ 1).

Informed traders have private information on the value of the asset. In particular, they

receive a perfectly informative private signal on the asset value; that is, they know the realization

of V d.
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An informed trader’s profit on day d is defined as

ud = (vd − ad)1{Xd=1} + (bd − vd)1{Xd=−1}. (4)

An informed trader chooses Xd to maximize expected profits; that is, they are risk neutral.

Since a trader knows the asset value, they find it optimal to buy whenever ad < vd, and sell

whenever bd > vd. They choose not to trade when bd < vd < ad. Otherwise, they are indifferent

between buying and not trading, or selling and not trading.2

3 Competitive Equilibrium

Before discussing algorithmic market making, it is worth discussing the competitive equilibrium.

Market makers face an adverse selection problem since a trader deciding to trade may be

doing so because they know the value of the asset. In a perfectly competitive market, market

makers make zero profits in expected value. Therefore, the prevailing quotes are equal to the

expected value of the asset, conditional on trade at the quoted prices:

ad = E(V d|Xd = 1, ad, bd), (5)

bd = E(V d|Xd = −1, ad, bd). (6)

Solving Equation 5 and Equation 6, we obtain:3

ad =
(1− µ)ηE[V d] + 2µδvH

2µδ + (1− µ)η
≡ aC , (7)

bd =
(1− µ)ηE[V d] + 2µ(1− δ)vL

2µ(1− δ) + (1− µ)η
≡ bC . (8)

4 Algorithmic Market Making

We now consider the case in which the function of market making is delegated to machines

that set the ask and bid prices according to a Q-learning algorithm (Watkins, 1989). While in

2We are implicitly assuming that ad > bd, which is typically the case. If, instead, that were not the case, a

trader may find it profitable both to buy and to sell the asset. In such a case, the informed trader chooses the

action that earns the highest profit.
3In our simple setup, there are unique fixed points solving Equation 5 and Equation 6. In general, the ask

is the minimum solution for Equation 5 and the bid is the maximum solution for Equation 6. See, e.g., Cipriani

and Guarino (2008) for the formal argument.
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the analysis of the competitive equilibrium, as standard, we have assumed that the model is

common knowledge and that rational market makers and rational informed traders maximize

their objective function on the basis of all available information, the starting point of algorithmic

market making is that the machines have limited knowledge of the environment in which they

are operating. The machines are used because they can exploit large data to learn the best

pricing strategy, with minimal informational input.

The N Algorithmic Market Makers (AMMs) operating in our financial market set the prices

based on a Q-learning algorithm, an example of off-policy reinforcement learning. The term

“off-policy” refers to the fact that the algorithm uses a behavioral policy different from the

optimal one. In particular, we consider an ε-greedy policy: each day,AMMi chooses the greedy

action (i.e., chooses the price with the highest perceived payoff) with probability 1− εdi and the

explorative action (i.e., chooses a random price from its action set) with the complementary

probability, εdi . Later, in Section 7, we will also consider a different policy.

We consider the case in which the algorithms have very limited knowledge of the environ-

ment and set their prices without conditioning on any specific variable. This is often referred to

as “stateless Q-learning,” although some authors prefer to say that the state space is a singleton.

On each day d, each market maker i chooses the ask price adi in the discrete space A =

{α1, α2, ..., αJ}, where α1 < v and αJ > vH . Similarly, they choose the bid price bdi in the

discrete space B = {β1, β2, ..., βJ}, where β1 < vL and βJ > v. Each market maker attaches a

particular value, called a “Q-value”, qdi (αj) to each possible ask price, and, similarly, a value

q̂di (βj) to each possible bid price. On the first day, d = 1, the Q-vectors q1i and q̂1i take random

values. These values represent the perceived reward for choosing a given price.

On each following day, the Q-vectors are updated on the basis of the payoffs that the market

maker receives that day. In particular, the Q-learning rule is as follows. If AMMi chooses ask

adi = αj and bid price bdi = βk, then the Q-values for these particular quotes are updated as

follows:

qd+1
i (αj) = λd

i

((
αj − vd

)
1{Φd

i=−1}

)
+
(
1− λd

i

)
qdi (αj), (9)

q̂d+1
i (βk) = λd

i

((
vd − βk

)
1{Φd

i=1}

)
+
(
1− λd

i

)
q̂di (βk), (10)

where λd
i ∈ [0, 1] is the weight that market maker i places on the realized payoff on that day
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(the “learning rate”).4

For all other (i.e., unchosen) ask prices αl (l ̸= j) and bid prices βm (m ̸= k), the Q-values

are unchanged:

qd+1
i (αl) = qdi (αl), (11)

q̂d+1
i (βm) = q̂di (βm). (12)

As we said, on each day, AMMi chooses to “exploit” or “explore”, with probability 1− εdi

and εdi , respectively. The value of εdi is given by

εdi = ci + (1− ci)e
−γid, (13)

where ci is a constant (weakly between 0 and 1) and γi is a parameter (weakly larger than 0)

that controls the rate at which this probability converges to the constant. If a market maker

chooses to exploit on a given day, they do so for both the ask and bid prices; the same is true if

they choose to explore. The market maker exploits the greedy action by choosing the ask price

αj associated with the highest value of qdi and the bid price βk associated with the highest value

of q̂di . That is, the greedy ask and bid prices of AMMi on day d are given by

ad∗i = argmax
αj

qdi (αj), (14)

bd∗i = argmax
βk

q̂di (βk). (15)

When, instead, the AMM explores, αj and βk are drawn independently from uniform distribu-

tions over A and B, respectively.

Note that, in our analysis, we will also consider a variant of this model, with only one

AMM (N = 1) and one “human” market maker. Nevertheless, the general analysis is for N ≥ 2

AMMs that compete among themselves.

4Note that the chosen ask (bid) is updated independently of whether there is a buy (sell) from the trader,

trade occurs on the other side of the market, or there is no trade. An alternative formulation could consist in

updating the Q-value for the chosen ask (bid) only when the trader buys (sells). We will come back to this issue

when we present the results in Section 6.
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5 Implementation of the Baseline Case

Let us now implement our financial market model with AMMs through simulations. We run

each simulation for one million days, to give plenty of time for price convergence. Of course,

taken literally, one million days is an unrealistically long period. We use this terminology mainly

for exposition. Day d can be thought of as any unit of time after which the asset value changes,

and the process of trading restarts, so that the market maker faces exactly the same situation,

that is, the same pricing problem.5 We repeat the simulations 1,000 times and then present

average results over these repetitions.

For our baseline simulation, we specialize the analysis as follows.

First, we set the two asset values to be vH = 102 and vL = 98, and the probability of these

two values to be δ = 0.5. This implies that the mean value of the asset, v, is equal to 100.

Moreover, we set the probability of an informed trader to µ = 0.3, and the probability of of a

noise trader buying or selling is η
2 = 1

2 . As a tie-breaking rule, we assume that informed traders

trade when they are indifferent between trading and not (the cases of indifference can arise for

ad = vH and for bd = vL).

Second, we consider the case in which there are N = 2 AMMs. They both choose ask

prices in A = {α1, α2, ..., αJ}, where, α1 = 99.5 and αJ = 103. Furthermore, we assume that

the other ask prices are evenly spaced between these two values, with a tick size of 0.05. Note

that A satisfies the conditions indicated in Section 4.1, that is, α1 < v and αJ > vH . Similarly,

they choose bid prices in B = {β1, β2, ..., βJ}, where, β1 = 97 and βJ = 100.5, and the other

bid prices are evenly spaced between these two values, with a tick size of 0.05. Overall, market

makers choose among 71 ask and 71 bid prices, that is, J = 71.

Third, we specify how the Q-learning algorithm works. We assume that both market makers

use the same learning rate λd
i = λ = 0.1, constant over all days. They explore with probability

εdi = exp(−0.00004d), that is, ci = 0 and γi = 0.00004.

Finally, we assume that the initial Q-values q1i (αj) and q̂1i (βj) for each AMM are indepen-

dently drawn from the same uniform distribution on [5, 8].

For the reader’s convenience, we summarize all parameter values in Table 1.

A few comments are in order. The values for the asset and for the traders are chosen for

5For instance, Easley et al. (2012) advocate the use of volume time rather than clock time. In their framework,

the process of trading “restarts” every time a “volume bucket” is filled.
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Table 1: Baseline Simulation

Parameter Value Description

The Simulation

K 1,000 Number of simulation repetitions

D 1,000,000 Number of trading days

The Asset

vH 102 High value of the asset

vL 98 Low value of the asset

δ 0.5 Probability of the high value

The Traders

µ 0.3 Probability of informed trading

η 1 Probability of a noise trader buying or selling

The AMMs

N 2 Number of AMMs

λd
i 0.1 Learning rate

γi 0.00004 Exploration decay rate

ci 0 Minimum exploration rate

illustration, and do not play a particular role. The two sets for ask and bid prices for the AMMs

are chosen as if the AMMs know that the asset value in the previous day is 100 and might have

gone up or down, but by not more than 3. It is of course important that these sets include the

competitive equilibrium prices, since we are interested in understanding whether the prices set

by the AMMs converge to these prices. Given our parameter values, if the market makers could

choose in a continuous space, the competitive equilibrium bid and ask prices, as computed in

expressions 7 and 8, would be 99.4 and 100.6, respectively. Because of the discrete space, with

a tick size of 0.05, there are three equilibrium bid prices (99.3, 99.35, and 99.4), and there are

three equilibrium ask prices (100.6, 100.65, and 100.7). The value of the exploration rate can be

more easily interpreted by looking at the number of times the algorithm explores each possible

price. As D → ∞, the number of times the AMM is expected to explore is

∞∑
d=1

e−γid =
e−γi

1− e−γi
,

which, for γi = 0.00004, is equal to 25,000; this means that each price is randomly visited

approximately 352 times. The learning rate of 0.1 means that the Q-value for a particular price

is updated rather substantially whenever the price is chosen by the AMM. Finally, the initial

Q-values are at least equal to 5, which is the maximum profit an AMM can get, e.g., by selling

an asset worth 98 for 103. By doing this, all actions will be played initially as Q-values are
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revised downwards; thus, we avoid becoming stuck on certain prices early on or avoiding certain

actions. This will play a role in our results, and we will discuss it in the next section.

6 Results for the Baseline Case

We now illustrate the results for the baseline case. Figure 1 shows the mean of the best ask prices

and of the best bid prices (the market prices) across our 1,000 repetitions over the one million

days.6 The mean ask price tends towards vH and, similarly, the mean bid price tends towards

vL. The convergence is reached after approximately 200,000 days. The graph also reports the

90% ranges for the best ask and bid prices across the simulations, in lighter blue and lighter

red. In the first days, the ranges are large, as the probability of exploration is near one. As the

exploration falls, the AMMs settle on ask prices around 102 and bid prices around 98. Figure

2 shows how the distribution of prices across the simulations change over time. After 250,000

days, all 1,000 repetitions have converged to ask prices weakly above vH and bid prices weakly

below vL; in most cases, prices have converged to exactly vH and vL. By the final trading day,

in almost all simulations (964 out of 1,000), the best ask submitted by the AMMs is 102 (vH)

and, in the remaining cases, the best ask is above 102. Similarly, in 974 simulations, the best

bid is equal to 98 (vL); in the remaining simulations, the best bids are strictly lower. When the

market ask (bid) is weakly higher than vH (respectively, lower than vL), informed traders no

longer have an incentive to trade. Profitable trade from the perspective of the AMMs occurs

only because we have assumed that noise traders are completely inelastic. If we had assumed

that noise traders also do not trade when the ask and bid prices reach the highest and lowest

possible asset valuation, the quotes set by the AMMs would imply a market breakdown. Note

also that, by setting the same price, the two AMMs get an equal share of the market. If an

AMM undercut the other, they would achieve a much larger volume of trade and higher profits

in expectation.

The reason the AMMs do not undercut one another is that the Q-values associated with

prices in (98, 102) are all strictly negative by the end of the one million days, as we show in

Figure 3. Given that the probability of exploration is approximately zero in the final day,

actions in the range (98, 102) with negative Q-values are not picked as there exist actions for

which the expected Q-value is, at a minimum, zero. This also occurs far before the final day.

6As we explained in Section 5, the word “day” is used in the model for exposition and should not be taken

literally.
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The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers to
the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and red shaded bands
represent the 90% range across the simulations for the ask and bid, respectively. The dashed lines plot the
competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes in the final
day are 102 and 98, respectively.

Figure 1: Baseline - Mean Market Quotes Over Days

When the probability of exploration becomes sufficiently low (e.g., εdi is approximately 0.03%

after 200,000 days), then almost all actions chosen are the greedy actions, which, as we have

seen, are asks at least equal to vH and bids not higher than vL. Figure 3 also shows that the

ask prices sufficiently above 102 and the bid prices sufficiently below 98 all have a Q-value of

zero, suggesting some downward updating of asks above 102 and bids below 98. This occurs

because, if one AMM has settled on an ask price of 102, then the other setting a price above

this would earn a reward of zero.

6.1 Playing Against a Fixed-price Market Maker

The bid-ask spread set by the AMMs seems implausibly large, to the point of eliminating any

incentive to trade on private information. Each AMM could increase its profits consistently

by undercutting the other, but it does not learn to do so. We now ask whether this result is

due to the strategic interaction between the two AMMs. Specifically, we ask whether a single

AMM would at least be able to learn to undercut a “human” market maker who adopts the
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(a) Ask Quotes (d =125,000) (b) Ask Quotes (d =250,000) (c) Ask Quotes (d =1,000,000)

(d) Bid Quotes (d =125,000) (e) Bid Quotes (d =250,000) (f) Bid Quotes (d =1,000,000)

The graph plots the distributions of market ask and bid prices across the 1,000 repetitions at different points
in the simulation: days 125,000, 250,000, and 1,000,000. The graph refers to the baseline Q-learning setup.

Figure 2: Baseline – Distributions of Market Ask and Bid Quotes over Time

(a) Ask Q-Table (b) Bid Q-Table

The graph plot the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure 3: Baseline - Final Mean Q-Tables

very simple strategy of setting a fixed ask lower than the asset’s high value (vH) (and higher

than the competitive equilibrium ask) and a fixed bid higher than the asset’s low value (vL)

(and lower than the competitive equilibrium bid). Specifically, we set a fixed ask price of 101

and a fixed bid price of 99; these prices are away from the competitive equilibrium prices, and

14



also away from the possible asset value realizations.

Figure 4 is the analogue of Figure 1 for this case. The market quotes, after some initial

experimentation, are the two fixed prices. Figure 5 shows that the AMM sets quotes that are

strictly less competitive than the fixed-price market maker, with the distribution of ask quotes

with support being strictly above 101 and that of bid quotes with support strictly below 99.

Rather than undercutting these prices by one tick-size, which would be the best response, the

AMM chooses less competitive quotes.

The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers to
the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and red shaded bands
represent the 90% range across the simulations for the ask and bid, respectively. The dashed lines plot the
competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes in the final
day are 101 and 99, respectively.

Figure 4: Fixed-price Market Maker - Mean Market Quotes Over Days
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(a) Ask (b) Bid

The graph shows the distribution of the ask and bid quotes set by the AMM in the final day, across the 1,000
repetitions. The graph refers to the baseline Q-learning setup.

Figure 5: Fixed-price Market Maker - Distribution of AMM Quotes in d = D = 1, 000, 000

Figure 6 shows the reason for this. All ask prices weakly lower than 101 are attached a

negative Q-value; similarly, all bid prices weakly larger than 99 are attached a negative Q-

value. Ask prices strictly larger than 101 and bid prices strictly lower than 99, instead, have a

Q-value of 0, which is intuitive, since every time the AMM chooses them (by experimentation

or exploitation) they do not trade and, hence, receive a payoff of zero.

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure 6: Fixed-price Market Maker - Final Mean Q-Tables

Overall, through simulations, we have obtained two unsettling results: first, AMMs using

Q-learning do not learn to undercut, which implies an implausibly large bid-ask spread when
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they compete with each other; second, even more surprisingly, an AMM would not be able to

outplay a human market maker who would simply set ask and bid prices at a fixed level, far

from the competitive prices. By undercutting these fixed prices, the AMM would earn a large

profit in expected value, but they are not able to do so. Figure 7 makes this point in a stark

way by comparing the cumulative profits made by the AMM and those they would have made

by undercutting the human market maker by one tick size. They make some initial losses in the

first 100,000 days and then begin setting prices that are strictly less competitive; at this point,

the AMM earns zero profits in each day.

The graph shows the mean of the cumulative profits across the 1,000 repetitions. The graph refers to the
baseline Q-learning setup. The green line plots the cumulative profit between day 1 and day d, where the
daily profit is computed as in Equation 3. The dashed line represents the expected cumulative profit from
undercutting the fixed price market maker by one tick, i.e., continually setting an ask of 100.95 and a bid of
99.05.

Figure 7: Fixed-price Market Maker - Realized vs Undercutting Cumulative Profits

6.2 The Loss-free Pricing Result

While these simulation results are, at first glance, unsettling and surprising, they have a simple

explanation. We now present a formal result stating that, in the absence of experimentation,

the AMMs will eventually settle down on ask prices no smaller than vH and on bid prices no

larger than vL whenever at least one ask above vH and one bid below vL have weakly positive

initial Q-values. Note that this is a very minimal assumption given that, for very large asks
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and very low bids, an AMM is sure not to make a loss.

Proposition 1. Suppose that λd
i = λ, and εdi = 0 for every day d and every AMMi. Moreover,

suppose that, for every AMMi, for at least one αj ≥ vH and at least one βk ≤ vL, the initial

Q-values, q1i (αj) and q̂1i (βk), are weakly positive. Then, almost surely, there exists a d > 0 such

that, for every day d > d, it holds that adi ≥ vH and bdi ≤ vL for every AMMi.

Proof. We show the result for ask prices. The same reasoning can be used to show the result

for bid prices.

First, observe that if, for αj ≥ vH , q1i (αj) ≥ 0, then qdi (αj) ≥ 0 for all d, since the payoff

from quoting αj (used in the updating of the Q-values) is never negative when αj ≥ vH .

Next, suppose, by contradiction, that there are infinitely many days d such that adi < vH

for at least one AMMi. Define α∗ as follows:

α∗ = argmin(αk such that adi = αk for infinitely many d for at least one AMMi).

Given our hypothesis (by contradiction), α∗ < vH .

Now, observe that the Q-value qdi (α
∗) is no larger than the maximum of the initial Q-value

q1i (α
∗) and of α∗ − vL, since the latter is the largest payoff that can be obtained with the ask

price α∗, no matter what d is.

Next, observe that, for d large enough, whenever the ask price α∗ is chosen by AMMi,

there is a positive probability that AMMi trades (because this is best ask price proposed by all

AMMs) and that the resulting payoff is α∗ − vH (whenever the asset has high value).

Given that α∗ − vH < 0 and that λd
i = λ for all d, there must be exist k∗ such that

(1− λ)k
∗
max(q1i (α

∗), α∗ − vL) + (1− (1− λ)k
∗
)(α∗ − vH) < 0.

After k∗ consecutive such draws, which eventually must occur with probability 1, we have that,

almost surely, qdi (α
∗) < 0 for some finite d.

Given that qdi (αj) ≥ 0 for all d, the inequality holds in particular for all d ≥ d. Therefore,

it cannot be that adi = α∗ for any d ≥ d, since for d = d∗, AMMi cannot choose α∗ as

qd
∗

i (αj) ≥ 0 > qd
∗

i (α∗). For d > d∗, AMMi cannot choose α∗ as the updating rule ensures that,

for all d > d∗, qdi (αj) ≥ 0 > qdi (α
∗) = qd

∗
i (α∗). This leads to the contradiction that α∗ is not

chosen by AMMi infinitely many times. Q. E. D.
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The logic of the proof is simple. For any ask price α∗ strictly lower than vH , there is a

positive probability that the market maker choosing it sells at this price (if this market maker

has the lowest ask price) and the value of the asset is high, resulting in a strictly negative payoff

α∗ − vH . After enough consecutive such events, which occur with probability 1 in the infinite

sequence of days, this would lead qd
∗

i (α∗) to become negative, which, in turn, would lead this

market maker to never consider this ask price again when there is no experimentation (because

the Q-values for at least one αj ≥ vH are always weakly positive).7

Our result is related to a maxmin result obtained by Sarin and Vahid (1999) in an individual

learning environment in which different alternatives yield stochastic rewards. Considering a

learning model like ours (with a constant weight on the realized immediate reward in the

updating of Q-values), they show that, eventually, the decision maker chooses an alternative

with the highest minimum payoff among the chosen alternatives. Note that, in our model

with one AMM and one market maker setting a fixed price, the result by Sarin and Vahid

(1999) indeed provides the insight that the AMM would never learn to undercut (because the

undercutting would not be best from this maxmin perspective), resulting in all trade being

performed by the fixed-price market maker. We now state this result formally:

Proposition 2. Consider the case of one AMM (denoted AMM1) that competes with a market

maker choosing a fixed ask price ad = α < vH and a fixed bid price b
d
= β > vL for all days

d. Suppose that λd
1 = λ, εd1 = 0 for all days d, and that the initial Q-values q11(αj) and q̂11(βk)

are weakly positive for at least one ask price αj ≥ vH and at least one bid price βk ≤ vL. Then,

almost surely, there exists some d > 0 such that, for all days d > d, ad1 > α and bd1 < β.

Asymptotically, almost surely, the AMM will not trade.

Proof. First, note that the minimum payoff for all asks αj > α and all bids βk < β is zero.

In contrast, all asks weakly lower than α and all bids weakly higher than β have a negative

minimum payoff (in the case of equality, there is a positive probability the AMM will buy an

asset with value vL or sell an asset with value vH). Then, observe that Proposition 1 and

Corollary 1 of Sarin and Vahid (1999) immediately imply that asymptotically, for d > d, almost

surely, ad1 > α and bd1 < β. Given these ask and bid prices, asymptotically, almost surely, any

trade occurs with the market maker setting a fixed price. Q. E. D.

7As we explained in Footnote 4, one could imagine a variant in which, for example, the Q-value for the quoted

ask is only updated when there is a buy order. Proposition 1 would also hold with this variant of Q-learning, and

so would all other propositions we present in the paper (in fact, the proofs are easier in the variant). Similarly,

the simulation results for the variant are very similar, and we present them in Appendix B.7.
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In our simulation with a fixed-price market maker, we still observe this result even if we

allow for some exponentially decaying experimentation.8

In our Proposition 1, we cannot use the result of Sarin and Vahid (1999) because of the

interaction among N learning players. But, similarly to Sarin and Vahid (1999), we obtain

that algorithmic learning leads the market makers to use loss-free pricing strategies in the

absence of experimentation. Our simulation with exponentially decaying experimentation leads

to observations very much in line with those obtained theoretically without experimentation.

It is worth noting that, while Proposition 1 rules out ask and bid prices in (vL, vH) in the

long run, in the final days of the simulations, we mostly observe ask prices close to vH and

bid prices close to vL. All ask (bid) prices weakly above vH (respectively, below vL) have the

maxmin property, hence they can all arise according to the logic used to establish our result.

Nevertheless, it would be possible to refine our result and show that, most of the time, AMMs

choose vH (respectively, vL) as the ask (respectively, bid) price, while some stochasticity persists

in the limit. The reason for the stochasticity is simple. To see it, let us focus on the ask prices,

and suppose that there exists a d such that the ask price ad = min{ad1, ..., adN} is equal to αj

for all d > d. Clearly, given Proposition 1, αj ≥ vH ; let us consider, in particular, αj > vH .9

Any AMMi who does not sell (either because they have chosen an ask strictly higher than αj or

because they have chosen αj but, by randomness, another AMM with the same ask is selected

to trade) keeps receiving a payoff of zero. Therefore, their qdi (αj) becomes closer to zero. After

a sufficiently long sequence of such events, qdi (αj) becomes smaller than the Q-value for another

ask price, say αl (l ̸= j). AMMi then switches to αl. Finally, note that if αl > αj , AMMi

continues not to trade, hence also qdi (αl) becomes closer to zero. All Q-values for ask prices

weakly larger than αj will eventually become smaller than the Q-value for some smaller ask

price, which contradicts that ad = αj for all d > d. While this argument shows why Q-learning

cannot converge to a single price, it also unveils why, in most cases, the ask price is exactly

equal to vH . When an AMM chooses a higher ask price, they receive a zero payoff, and the

logic just illustrated applies. Intuitively, among the ask prices weakly larger than vH (the only

ones not ruled out by Proposition 1), the ask price adi = vH is the most frequently chosen,

8Sarin and Vahid (1999) obtain their result by making an assumption of “optimism” for all initial Q-values

(but see their footnote 10). In the proposition, we make the weaker assumption that at least one initial Q-value

has to be weakly positive, which is very natural in our context. In the simulations, we assumed that all initial

Q-values are “optimistic”. In other simulations, we use lower, but positive, initial Q-values, but this does not

alter the results (see Appendix B.1).
9In our argument, we are assuming that the grid of ask prices includes vH .
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asymptotically, because it is the price at which it is more likely that an AMM will sell. It is

not the ask price forever because ad = min{ad1, ..., adN} and at least one AMM will eventually

(and temporarily) switch to a lower ask (or all market makers will switch to a larger ask). Note

that this argument is different from the usual undercutting argument, in which the comparison

between the payoffs of two prices leads to choosing the lower one. In Q-learning, for an AMM,

a higher ask price leads to no trade and, hence, to a decreasing Q-value, which eventually leads

the AMM to switch from that ask.10

7 Beyond the Baseline Case

The theoretical loss-free pricing result that we stated in the previous section is obtained in the

absence of experimentation and asymptotically, as the number of days converges to infinity. Our

simulation results for the baseline case, on the other hand, show that the same result occurs

even in the presence of experimentation and in finite time. It is worth studying what happens

when we consider alternative parameterizations to the baseline case. One possibility is to let

AMMs react to market feedback in a different way: this means that they update the Q-values

on the basis of a different value of λd
i (set equal to 0.1 in the baseline case); another is to let

them have different exploration dynamics, due to different values of the parameters γi and ci

(set equal to 0.00004 and 0, respectively, in the baseline case), or to a different functional form

of εdi . Here, we only report the main results for these alternative specifications in terms of the

mean market prices over days, and refer the reader to Appendix B for more details.

7.1 Varying the Learning Rate

As a first exercise, we set λd
i = 0.01 for both AMMs (i.e., i = 1, 2), leaving all other parameters

unchanged from the baseline case. AMMs now give much less weight to any feedback they

receive from the market. The resulting ask and bid prices are shown in Figure 8b, the analog

of Figure 1. The final mean ask is 101.76, lower than vH (102), although not by much, and still

substantially far from the competitive equilibrium ask. Similarly, the final mean bid is 98.24,

10As a final note, it is worth observing that this logic does not hold in the case in which there is only one AMM

competing with a market maker setting fixed ask and bid prices. In this case, there is no reason to expect that

the AMM will mainly choose an ask close to vH . On the contrary, the Q-values for all the ask prices above vH

will eventually reach the same level and all these ask prices will keep being chosen. Accordingly, our simulations

show that, in the last of trading, the distribution of all ask prices chosen by the AMM as the greedy action is

approximately uniform, above vH (see Figure 5).
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higher than vL (98), but still far from the competitive bid.

In the other panels of Figure 8, we consider alternative λi values. We find that λd
i = 0.05

produces a very similar result to the baseline of λd
i = 0.1 (reported in Panel d). Interestingly, a

similar result is also observed for λd
i = 0.001 (Figure 8a), in this case due to insufficient learning.

(a) λd
i = 0.001 (b) λd

i = 0.01

(c) λd
i = 0.05 (d) λd

i = 0.1(∗)
Each panel, for a given value of λd

i , plots the mean market quotes over days, averaging across the 1,000
repetitions. The graph refers to the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line;
the blue and red shaded bands represent the 90% range across the simulations for the ask and bid, respectively.
The dashed lines plot the competitive ask and bid prices, as discussed in Section 3. The “(*)” refers to the
baseline parameterization that we considered in Section 6. The mean market ask (bid) quotes in the final day
are as follows: λd

i = 0.001 — 102.28 (97.71); λd
i = 0.01 — 101.76 (98.24); λd

i = 0.05 — 102.01 (97.99); λd
i = 0.1

— 102 (98).

Figure 8: λd
i Comparative Statics - Mean Market Quotes Over Days

To understand these results, it is worth going back to the intuitions for Proposition 1.

The loss-free pricing result is obtained because, in infinite horizon, with probability 1, an ask

strictly lower than vH is associated with a sufficiently large number of negative payoffs that its

Q-value becomes negative, and, thus, it can no longer be the greedy action. In the absence of

experimentation, that ask is never chosen again. With relatively large λd
i , as in our baseline

simulation, just a few negative payoffs are enough to make the Q-value of an ask price below vH
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negative. When λd
i = 0.01 rather than 0.1, the number of negative experiences needed to bring

the Q-value below zero becomes much larger, since each experience is weighted much less in the

updating process.11 As our simulations reveal, we were able to move away from the loss-free

pricing result with this lower λd
i .
12 When λd

i is too small, however, the algorithm does not react

strong enough to market feedback and the baseline result occurs again.

7.2 Varying the Minimum Exploration Probability

Rather than changing the learning rate, λd
i , let us now see what happens if we change the fre-

quency with which the AMMs explore rather than exploit. As a first exercise, we set ci = 0.05,

which means that, in each day, there is at least a 5% probability of exploration. As Figure 9c

shows, the mean ask is below the loss-free price, although still far from the competitive price.

The exploration helps to have a lower ask, although the change is not very large. Part of this

may look mechanical, since prices (including lower ask prices) are chosen by exploration without

being optimal. But there is a more important mechanism at work: intuitively, without explo-

ration, once the Q-value for an ask price above the competitive equilibrium becomes negative,

that price will not be used again (since it cannot be the greedy action) and the AMM is unable

to learn that it is profitable (in expectation). With a constant experimentation probability, the

price will be used again and, eventually, the Q-value can become positive. With a sequence

of one million days, AMMs learn that at least some prices are profitable, although not those

too close to the competitive equilibrium. Indeed, for asks and bids closer to the competitive

equilibrium, when their Q-value is negative, it requires that they are chosen more often through

random exploration for the Q-values to become positive again (since the profit from these prices

is smaller than for more extreme prices). Another notable feature in Figure 9 is that even, at

the end of one million days, there is a great deal of heterogeneity in prices, as shown by the

thicker mean price lines (greater variation) and wider ranges across simulations for both ask

and bid when ci > 0. This is the cost of experimentation, since all prices keep being tried.

11For example, suppose that the Q-value for an ask price of 101 is 0.2: when λd
i = 0.1, it takes two losses (the

loss in our given example is -1) to reach a negative Q-value; in contrast, for λd
i = 0.01, the number of required

losses is 19.
12In other words, across the simulations, there are sequences of one million days in which the Q-values of ask

prices below vH are positive in the last days.
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(a) ci = 0 (*) (b) ci = 0.01 (c) ci = 0.05

(d) ci = 0.10 (e) ci = 0.20 (f) ci = 0.50

Each panel, for a given value of ci, plots the mean market quotes over days, averaging across the 1,000
repetitions. The graph refers to the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line;
the blue and red shaded bands represent the 90% range across the simulations for the ask and bid, respectively.
The dashed lines plot the competitive ask and bid prices, as discussed in Section 3. The “(*)” refers to the
baseline parameterization that we considered in Section 6. The mean market ask (bid) quotes in the final day
are as follows: ci = 0 — 102 (98); ci = 0.05 — 101.94 (98.06); ci = 0.10 — 101.77 (98.24); ci = 0.20 — 101.37
(98.65); ci = 0.50 — 100.92 (99.07).

Figure 9: ci Comparative Statics - Mean Market Quotes Over Days

An alternative to considering different lower bounds on the level of exploration (ci) is to

consider different values for the exploration decay parameter, γi. We have done this exercise

for different values of γi:

γi = {1× 10−4, 4× 10−5, 2× 10−5, 1× 10−5, 5× 10−6, 2.5× 10−6}.

Broadly speaking, these different parameter values do not produce significantly different results.

We refer the reader to Appendix B.4 for all the details.

7.3 Soft-max Exploration

The ε-greedy exploration is only one of the possible exploration strategies considered in machine

learning. Another common exploration method is the logit exploration, also known in the

machine learning literature as “Boltzmann exploration” or “soft-max exploration” (see, e.g.,
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Sutton and Barto, 2018).13

Rather than having the best action chosen with probability 1− εdi (in case of exploitation)

and all actions chosen uniformly with probability εdi (in case of experimentation), with logit

exploration more promising actions are explored with higher probabilities. In our context,

this means that AMMs choose asks and bids with higher Q-values with a higher probability.

Specifically, on day d, AMMi chooses the ask αj with the following probability:

Pr(adi = αj) =
eτQi(αj)∑

αl∈A eτQi(αl)
,

and, similarly, chooses the bid βj with the following probability:

Pr(adi = βj) =
eτQi(βj)∑

βl∈B eτQi(βl)
,

where the parameter τ controls the extent of randomness: when τ = 0, then this method chooses

all asks (bids) uniformly, and when τ goes to ∞, then this method chooses the greedy ask (bid)

with probability 1. For intermediate values, this method offers a smoother way of choosing

different actions than ε-greedy exploration. The soft-max exploration functions differently from

the ε-greedy in that zero is no longer a “cut-off” point for the Q-values. Previously, when a

Q-value dropped below zero and exploration was near zero, this action would not be chosen

again, even if the chosen alternative was near in value, but just positive. Now, if two Q-values

are close but one is slightly positive and the other slightly negative, then the probabilities of

these actions being chosen are quite similar. As a result, actions with potential losses can still

be chosen through the soft-max exploration.

We now present some results for the illustrative case of τ = 20. In the final day, we see

(Figure 10) that the mean ask and bid prices are 101.82 and 98.20, within the (98, 102) interval

but still away from equilibrium prices.

In contrast to the Q-tables displayed in Figure 3, we see that the AMMs attach positive

Q-values to ask (bid) prices below vH (respectively, below vL) even in the last trading day (see

Appendix B.5).

13Logit exploration has also been used in learning models in Game Theory, see, e.g., Mookherjee and Sopher

(1997) and Camerer and Ho (1999).
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The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers to
the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and red shaded bands
represent the 90% range across the simulations for the ask and bid, respectively. The dashed lines plot the
competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes in the final
day are 101.82 and 98.20, respectively.

Figure 10: Soft-max Exploration - Mean Market Quotes Over Days

8 Counterfactual Updating

In the previous section, we have studied how changing the learning and exploration parameters

affect the results of the baseline case. We now proceed in a different way. We note that, in a

standard theoretical analysis of financial markets, we typically assume that the model is known

by all players (in fact, even common knowledge among them). The advantage of Q-learning

pricing algorithms is that we can dispense with such an assumption: in our stateless Q-learning,

the AMMs only know the range in which to find the best quotes, their own payoffs, and nothing

else. While a complete knowledge of the model is a heroic assumption, we can, however, endow

AMMs with at least an elementary understanding of a financial market. It seems plausible that

a market maker should understand that a trader willing to buy the asset at a specific ask price

would also buy it at any lower price. Similarly, they should understand that a trader willing to

sell the asset at a specific bid price would also be willing to sell it at any greater price. We follow

this line of reasoning and let AMMs update not only the Q-values for the quotes they chose,
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but also for the other quotes for which an obvious inference could be made. In addition to this

simple understanding of how markets work, we endow the AMMs with minimal information,

that of the market quotes (i.e., the best ask and the best bid), an uncontroversial hypothesis

for any market maker model.14

As an example, consider the case of two AMMs, and suppose a trader bought the asset

from AMM1 at the price of ad = αj . AMM1 knows that the trader would have also bought

had he chosen any other price lower than αj . Hence, in our new algorithm, they also update

the Q-values for all ask prices lower than αj . They do not update ask prices greater than αj

since they do not know for sure whether they would have been able to sell at those prices.

What about AMM2 who had chosen an ask greater than αj? Observing the trade at ad = αj ,

they know that they could have undercut their competitor, while they would not have sold for

any ask greater than αj . For an ask price of αj , they would have sold with probability 50%.

Therefore, AMM2 updates the Q-values for all asks: for any ask strictly greater than αj the

Q-values are updated with a payoff of zero; for any ask weakly lower than αj , the the Q-value

are updated taking into account that the AMM would have sold (with probability 50% in the

case of a tie at αj).

One could observe that a realized profit may be more relevant than a hypothetical one (in

the counterfactual case) in the updating of the Q-values. For instance, the AMM could be

unsure of whether in the case they had chosen a lower ask, so would have done the other AMM.

We can accommodate this variant by putting a weight ρ (0 ≤ ρ ≤ 1) on the counterfactual

payoff.

Let us now illustrate the general case of N AMMs in detail. The following possibilities can

occur:

1. AMMi quotes the best ask ad
i = αj = ad and sells the asset. AMMi updates the

Q-values for αj , the action chosen, on the basis of the realized payoff, and the Q-values

for all asks lower than αj using the payoffs they would have received by selling at those

prices (the counterfactual payoff). Since we have assumed that AMMs only know their

own quotes and the market quotes, AMMi does not update the Q-value for any ask greater

than αj , since they do not know whether they would have been able to sell.

14We could assume that AMMs are also aware of their competitors’ ask and bid quotes (e.g., through the

order book), but we do not use this assumption here.
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Formally, the Q-values are updated as follows:

qd+1
i (αj) = λd

i (αj − vd) + (1− λd
i )q

d
i (αj), (16)

qd+1
i (αl) = λd

i ρ(αl − vd) + (1− λd
i )q

d
i (αl), for all αl < αj , (17)

qd+1
i (αk) = qdi (αk), for all αk > αj . (18)

2. AMMi quotes the ask ad
i ≥ αj = ad and another AMM sells the asset. Since

AMMi is aware of their own ask price and of the market ask at which the transaction

occurred, they update the Q-values for all asks as follows: for any ask strictly greater than

αj , the Q-value is updated with a payoff of zero; if AMMi quotes a
d
i > αj , then the Q-value

associated with αj is updated with the counterfactual payoff (i.e., taking into account that

the AMM would have sold with a probability of 1
n+1 , where n is the number of AMMs

choosing the market ask);15 if, instead, AMMi quotes adi = αj but does not trade, then

they update with the realized profit (i.e., zero) rather than the counterfactual profit; and,

for ask prices strictly lower than αj , the Q-values are updated with the counterfactual

payoff (taking into account that the AMM would have sold with probability 1).

qd+1
i (αk) = (1− λd

i )q
d
i (αk), for all αk > αj , (19)

qd+1
i (αj) = λd

i ρ
1

n+ 1
(αj − vd) + (1− λd

i )q
d
i (αj), if adi > αj , (20)

qd+1
i (αj) = (1− λd

i )q
d
i (αj), if adi = αj , (21)

qd+1
i (αl) = λd

i ρ(αl − vd) + (1− λd
i )q

d
i (αl), for all αl < αj . (22)

3. AMMi quotes the ask ad
i ≥ αj = ad and there is no buy. Note that this can

occur either because there is no trade or because there is a sell order. AMMi updates the

Q-values for all prices that are greater than or equal to αj since, at all these prices, the

payoff is, or would have been, zero. AMMi does not update the Q-values for the lower

asks, since they do not know whether setting a lower price would have led to a sell.

qd+1
i (αk) = (1− λd

i )q
d
i (αk), for all αk ≥ αj , (23)

qd+1
i (αl) = qdi (αl), for all αl < αj . (24)

15Here we are assuming that the AMMs know the number of other AMMs quoting the best prices. In the case

of only one AMM quoting at the best ask, this probability would be 50%. Alternative assumptions would not

alter the analysis significantly.
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For the bid, the cases are analogous; just note that higher bids are preferred by the traders,

since they are the prices at which they sell to the market maker. We present the formulas in

Appendix A.

We are not the first to suggest that a model of reinforcement learning can (and, perhaps,

should) incorporate some understanding of the economy or of the game that is being played.

Models of learning with counterfactual updating have, indeed, been studied in Game Theory.

Camerer and Ho (1999) propose a model of “Experience-Weighted Attraction” (EWA) learn-

ing which encompasses both reinforcement learning and belief learning (fictitious play). Our

learning model with counterfactual updating is a special case of the EWA learning, and so is

the individual decision making model of Sarin and Vahid (1999) previously discussed. Note

that also Camerer and Ho (1999) allow for the counterfactual updating to have a lower weight

(captured by their parameter δ). More recently, counterfactual updating has been studied by

Asker et al. (2024) in their work on algorithmic pricing in an oligopoly. They observe that a

simple reinforcement learning model like our baseline Q-learning and a model of learning in

which the algorithm has a lot of knowledge and information about the economy (e.g., they

know the competitors’ prices) are two extreme models; in between, there are others which only

use some understanding of the economy and some amount of information. Our model in which

AMMs only know and use the market quotes and their own quotes for updating the Q-values

is similar to their Imperfect Counterfactual Updating.16

9 Results for Counterfactual Updating

Figure 11 shows the mean market ask and bid prices over days for the Q-learning with counter-

factual updating. Prices converge towards the competitive equilibrium. In the final days, in all

simulations, ask and bid are either at the competitive levels or very close to them. The figure

refers to simulations in which the parameter values are identical to those listed in Table 1 (and,

for exposition, we have set ρ = 0.6).

Figure 11 shows that the market quotes very quickly reach the competitive levels; in partic-

ular, the ask and bid quotes in the final day are 100.74 and 99.26, respectively. These prices are

reached by d = 100,000 and the average quotes remain around these levels for the remainder

16In Asker et al. (2024) the knowledge of the downward-sloping demand curve allows updating more than just

the chosen price (in what they call the “synchronous learning”). As we wrote, we are assuming that the AMMs

are only aware of their own prices and of the market prices. They do not know the prices quoted by other AMMs.

If they could also use this information, this could further refine the updating and improve the learning.
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The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers
to the counterfactual-updating Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and
red shaded bands represent the 90% range across the simulations for the ask and bid, respectively. The dashed
lines plot the competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes
in the final day are 100.69 and 99.31, respectively.

Figure 11: Counterfactual Updating - Mean Market Quotes Over Days

of the one million days. As can be seen both in the range of market quotes in Figure 11 and

the distributions in Figure 12, the counterfactual updating also leads to more noise than the

baseline case, as multiple prices continue to be updated simultaneously.

9.1 The Competitive Equilibrium Pricing Result

The contrast between these simulation results and those we obtained for the baseline case could

not be stronger. Letting the AMMs have a minimal understanding of the market is enough to

move from loss-free pricing to competitive pricing.

To understand what is at the root of these simulation findings, we now provide a formal

result. To obtain a sharp theoretical result, we assume that the learning rates λd
i in the updating

rule satisfy the Robbins-Monro conditions,
∑

d λ
d
i = ∞ and

∑
d

(
λd
i

)2
< ∞, which will allow us

to rely on continuous time approximation to analyze the long-run dynamics of the system (see

Benäım (1999) for an exposition of the mathematical background establishing such connections).

The reader familiar with Q-learning will notice that these conditions are the same as used in the

classic convergence theorem of Watkins and Dayan (1992). They guarantee that decision makers

(the AMMs in our context) continue to learn (the learning rate decays slowly), but the learning
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(a) Ask Quotes (d =125,000) (b) Ask Quotes (d =250,000) (c) Ask Quotes (d =1,000,000)

(d) Bid Quotes (d =125,000) (e) Bid Quotes (d =250,000) (f) Bid Quotes (d =1,000,000)

The graph plots the distributions of market ask and bid prices across the 1,000 repetitions at different points
in the simulation: days 125,000, 250,000, and 1,000,000. The graph refers to the counterfactual-updating
Q-learning setup.

Figure 12: Counterfactual Updating – Distributions of Market Ask and Bid Quotes over Time

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the counterfactual-updating Q-learning setup.

Figure 13: Counterfactual Updating - Final Mean Q-Tables

rate is not too fast (the decay is not too slow). Similarly to the theoretical result in the baseline

Q-learning model presented in Section 6, we also assume that there is no experimentation,

although experimentation would not alter our conclusions much. Finally, we assume that any
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ask and bid prices in the continuum can be considered, even if similar conclusions would hold

for the case of the finite ask and bid grid that we have employed in our simulations.

With these premises, we are now ready to state that, under a minimal condition on the

initial Q-values, similar to that we used for Proposition 1, there is asymptotic convergence to

the competitive equilibrium ask and bid prices, aC and bC :

Proposition 3. Suppose that, for every AMMi, the sequences of λd
i satisfies

∑
d λ

d
i = ∞ and∑

d

(
λd
i

)2
< ∞, and, moreover, that εdi = 0 for all d; assume that ρ > 0.5 and suppose that, for

every AMMi, for at least one αj ≥ aC and at least one βk ≤ bC , the initial Q-values, q1i (αj)

and q̂1i (βk), are weakly positive. Then, asymptotically, in the limit of a continuous grid of ask

and bid prices, every AMMi quotes the competitive ask price aC and bid price bC almost surely.

Proof. The proof is for the ask price; the proof for the bid price follows a similar logic.

As a preliminary note, in this proof, we find it convenient to change the notation and,

instead of d (for days), we use t (for time), which is more common in continuous-time analysis.

Moreover, to simplify the exposition, we will consider the case of λt
i = λt for every i.

Given the conditions for λt, we can employ a continuous-time approximation of the discrete-

time dynamics of Q-values for the ask prices. More precisely, we use Propositions 4.1 and

4.2, along with the Limit Set Theorem (Theorem 5.7), of Benäım (1999) to ensure that the

asymptotics of the discrete-time dynamics are well approximated by the continuous-time motion

that we now describe.

Calling αmin the prevailing ask price at time t (recall that this is the minimum ask quoted

by all AMMs at that time), the continuous time approximation of the motion of Q-values for

any ask price α strictly below αmin writes

dqti
dt

(α) = ρ[(1− µ)
η

2
+ µδ][α− aC ]− qti(α). (25)

This expression can be understood as follows. The Q-values of ask prices below min(vH , αmin)

can be updated with the counterfactual formula. When the ask price is αmin, the expected pay-

off obtained with any ask price strictly below min(vH , αmin) is [(1 − µ)η2 + µδ][α − aC ] since

trade on this side occurs with probability [(1 − µ)η2 + µδ] and, when it occurs, it results in an

expected payoff of α− aC (recall that informed traders buy if v = vH , and recall, also from our

updating formulas that, when trade is on the other side, or there is no trade, the payoff is zero);

moreover, given that α < αmin, it was not chosen at time t, hence the payoff is updated with

the ρ discount.
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In the same spirit, for an AMMi quoting αmin, we have:

dqti
dt

(αmin) =
1

M
[(1− µ)

η

2
+ µδ][αmin − aC ]− qti(α

min) (26)

where M is the number of AMMs quoting αmin at time t. The difference with the previous

expression is that there is no ρ discount in the update, since the ask price αmin is chosen by

AMMi and, in the case several (i.e., M) AMMs choose αmin, AMMs are selected to be the seller

with equally probability.

Now, define αinf as the infimum of the market ask prices that can be quoted asymptotically

and let α−
inf be the next ask price below αinf in the grid (assumed to be close to the continuous

grid).

We first show that αinf cannot strictly exceed aC (in the limit of the fine grid). This follows

because
dqti
dt

(α−
inf)−

dqti
dt

(αinf) > 0

for every AMMi whenever αinf > aC and ρ > 0.5 and the minimum ask price is αinf . (When the

minimum ask price is different from α−
inf ,

dqti
dt (α

−
inf) −

dqti
dt (αinf) gets arbitrarily close to zero in

the limit of the continuous grid.) This implies that eventually, for some t and for every AMMi,

we must have that, for all t > t, qti(α
−
inf) > qti(αinf), implying that αinf is not chosen infinitely

many times by AMMi.

We next observe that we cannot have αinf < aC as this would imply that eventually, for

some t and every AMMi and t > t, qti(αinf) < 0, making it impossible that αinf is chosen

infinitely many times by AMMi. We conclude that αinf = aC .

Consider an arbitrary accumulation point α∗ of the sequences of ask prices ati for the various

AMMi. We must have that α∗ ≥ αinf = aC as we have just shown. But α∗ > aC can be ruled

out as, by the same argument as the one used above, we would have that, for some t and for all

AMMi, it must be that, for all t > t, qti(α
∗−) > qti(α

∗), implying that α∗ is not chosen infinitely

many times by any AMMi. Q. E. D.

At an intuitive level, when the ask on some given day d is αmin, any AMM can assess that

with a counterfactual ask price slightly lower than αmin, they would get αmin−V d in the case of

a sale and zero otherwise. This gives rise to a stochastic payoff, but the conditions on λd
i stated

in the proposition ensure that, in the limit (as d grows large), one can reason with the induced

mean of the reward. That is, using a continuous-time approximation, after some re-writing and

after noting that counterfactual payoffs are discounted by the ρ factor, one gets (25). Similarly,
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for the on-path ask price αmin, one gets (26). For ρ > 0.5, these expressions ensure that the

Q-value of an ask price slightly lower than αmin must grow more quickly than the Q-value of

αmin whenever αmin lies strictly above the competitive ask price aC .17 Therefore, starting from

ask prices above the competitive one, AMMs will eventually drift their choice of ask prices

toward the competitive one through a gradual undercutting process. The system will not go

beyond the competitive ask price because, at a lower ask price, AMMs would be making losses

in expectation. This overall dynamics leads to the competitive pricing we described in Section

3. Note that the argument works even in the absence of any experimentation (whereas in the

classic one-agent problem, Q-learning requires experimentation to obtain the optimal policy - see

Watkins and Dayan, 1992). Intuitively, at ask (bid) prices higher (lower) than the competitive

equilibrium, the counterfactual updating offers enough information that experimentation is not

needed.

To emphasize the logic of our proof, we now focus on just one step of the process: we

consider the case of one AMM competing against a market maker who uses a fixed ask (higher

than the competitive ask price) and a fixed bid prices (lower than the competitive bid price).

Proposition 4. Consider the case of one AMM (denoted AMM1) who competes with a market

maker choosing a fixed ask price α that is at least two ticks above aC and a fixed bid price β that

is at least two ticks below bC in the respective finite grids of ask and bid prices. Suppose that

the sequences of λd
1 satisfy

∑
d λ

d
1 = ∞ and

∑
d

(
λd
1

)2
< ∞, and, moreover, that εd1 = 0 for all

d; assume that ρ > 0.5 and suppose that, for every AMMi, for at least one αj ≥ aC and at least

one βk ≤ bC , the initial Q-values, q1i (αj) and q̂1i (βk), are weakly positive. Then, asymptotically,

almost surely, AMM1 quotes an ask price that is one tick below α and a bid price that is one

tick above β, and, as a result, AMM1 does all the trading.

Proof. For AMM1, one can obtain the same expressions (25) and (26) in the proof of the previous

proposition. From these expressions, it appears that qti(α
−) (defined as in the previous proof)

grows more quickly than the Q-value of any other ask price, thereby leading, eventually, AMM1

to choose an ask price equal to α−. Q. E. D.

With counterfactual updating, Q-learning produces exactly the result that someone using

17The sufficient condition ρ > 0.5 comes from the observation that, independently of the number N of AMMs,

an AMM could be quoting the best price with only one other AMM; by undercutting, the AMM would double

their payoff. They would more than double it in other cases.
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an algorithmic market maker would like to see: when facing another market maker using a

trivial pricing strategy (fixed bid and ask prices), the AMM just undercuts the competitor and

earns all trading profits. Figure 14 shows the results, with experimentation, for a single AMM

competing against a fixed-price market maker.

The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers
to the counterfactual-updating Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and
red shaded bands represent the 90% range across the simulations for the ask and bid, respectively. The dashed
lines plot the competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes
in the final day are 100.84 and 99.16, respectively. The parameter ρ is set equal to 1.

Figure 14: Counterfactual Updating, Fixed-price Market Maker - Mean Market Quotes Over
Days

Given the stark contrast in results between the baseline Q-learning (Propositions 1 and 2

and related simulations) and the counterfactual-updating Q-learning (Propositions 3 and 4 and

related simulations), we would like to re-emphasize the mechanisms that lead to them. For

exposition, let us focus on the ask prices. Suppose that, at a particular trading time, the ask

with the highest Q-value for an AMM is in between the competitive equilibrium ask and the

highest value of the asset. In expectation, this ask price is profitable. In the baseline Q-learning

with a fixed learning rate, despite the value for this ask being positive in expectation, the

corresponding Q-value will eventually become negative and, at that point, the AMM will not

choose it again (for ever, if there is no experimentation). The reason the Q-value will eventually

become negative is that, almost surely, there will be a sufficiently long sequence of bad draws

in which the AMM will make negative profits, which will push the Q-value to the negative

region. Thus, although profitable in expectation, this ask price cannot be chosen in the long
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run. Observe that the logic of this result holds independently of the size of the learning rate,

even if, with a smaller learning rate, a longer sequence of bad draws may be needed to make

the Q-value cross the negative region.

Consider now the case of the counterfactual-updating Q-learning. Here, there is a “race”

among Q-values, since more than one Q-value is updated every time. In expectation, the

Q-values for smaller asks (but higher than the competitive equilibrium one) will grow faster

because the AMM choosing them is the one that manages to make the entire trade while still

selling at a profitable price. This eventually leads to the competitive equilibrium (or to an ask

just below the fixed price, in the individual decision-making case), by the standard logic of the

undercutting. While our formal results are obtained for sequences of learning rates satisfying

the Robbins-Monro conditions (which allow for crisper results using stochastic approximation

results), qualitatively similar results would be obtained in the case of constant but small learning

rates. Unlike in the baseline Q-learning, even assuming constant but small learning rates, if

the chosen ask prices were consistently above a level strictly higher than the competitive ask

price, any ask price price strictly below that level would asymptotically get a Q-value close to

the correct mean value associated with that ask price (because updating would take place for

all realizations of the uncertainty and the law of large number could be used to establish this).

Our simulations confirm this and also show that the results we obtain analytically extend to

other parameter value and, in particular, to the case of experimentation.

10 Conclusion

We have studied how algorithmic market makers using a stateless Q-learning algorithm price a

financial asset of uncertain value. We have shown that the result varies from loss-free pricing to

competitive pricing, depending on how the algorithms are set up. When the algorithms update

only the values of the prices they have used, we can get the extreme of loss-free prices. When,

instead, they are endowed with even a minimal understanding of the market (that traders prefer

to buy at lower prices and sell at higher prices) and some minimal information (the prevailing

market quotes), then we get competitive prices. In our stateless Q-learning, there is no collusion.

Of course, algorithmic market makers can use much more information and condition on

many states, including, for instance, the level of their inventories (see, e.g., Ganesh et al., 2019

and other papers reviewed in Bai et al., 2024). In our work, we have considered a very simple,

stateless, setup, with the purpose of making the causes of supra-competitive or competitive

prices transparent. We think this is important both for positive reasons, for our understanding
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of markets, and for normative reasons, for regulatory and policy aims. There is no collusion

arising in our context, but of course we do not claim that there is no collusion in real markets;

this is an empirical question to which our theoretical work does not aim to speak. We also do

not exclude that supra-competitive prices can arise due to other mechanisms (see, e.g., the work

by Dou et al., 2024, studying algorithmic traders rather than algorithmic market makers).

We have considered a simple setup (one trader “per day” in our terminology) in which

stationarity allows the use of stateless Q-learning. With sequences of trades, the number of

Q-values grows very quickly. Dealing with such natural extensions would require, for practical

purposes, amending the basic Q-learning so that several Q-values are updated at the same time.

This could call for extensions such as the Coarse Q-learning in which different alternatives are

bundled into similarity classes, as explored in decision problems by Jehiel and Satpathy (2025).
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A Counterfactual Updating - Bid-side Updating

Here, we repeat the explanation of the counterfactual updating but for the bid-side updating.

1. AMMi quotes bdi = βj = bd buys the asset. The AMMi updates the Q-values for

βj on the basis of the realized payoff and the Q-values for all the bids greater than βj for

the payoffs they would have received by buying at those prices. AMMi does not update

the Q-values for any bid less than βj since they do not know whether they would have

been able to buy. Formally, the Q-values are updated as follows:

q̂d+1
i (βj) = λd

i (v
d − βj) + (1− λd

i )q̂
d
i (βj) (27)

q̂d+1
i (βk) = λd

i ρ(v
d − βk) + (1− λd

i )q̂
d
i (βk), for βk > βj (28)

q̂d+1
i (βl) = q̂di (βl), for βl < βj (29)

2. AMMi quotes bdi ≤ βj = bd and another AMM buys the asset. Since the AMM

is aware of their own bid price and of the market bid at which the transaction occurred,

they update the Q-values for all the bid as follows: for any bid strictly less than βj , the

Q-value is updated with a payoff of zero; if bdi < βj , the Q-value is updated with the

counterfactual payoff (i.e., taking into account that the AMM would have bought with a

probability of 1
n+1 , where n is the number of AMMs choosing the market bid); if, instead,

bdi = βj , then the Q-value is updated with the realized payoff (i.e., zero); and, for the bid

prices strictly higher than βj , the Q-values are updated with the counterfactual payoff.

q̂d+1
i (βl) = (1− λd

i )q̂
d
i (βl), for all βl < βj , (30)

q̂d+1
i (βj) = λd

i ρ
1

n+ 1
(vd − βj) + (1− λd

i )q̂
d
i (βj), if bdi < βj (31)

q̂d+1
i (βj) = (1− λd

i )q̂
d
i (βj), if bdi = βj , (32)

q̂d+1
i (βk) = λd

i ρ(v
d − βk) + (1− λd

i )q̂
d
i (βk), for all βk > βj . (33)

3. AMMi quotes bdi ≤ βj = bd and there is no trade. AMMi updates the Q-values

for all prices that are smaller than or equal to βj since the payoff would have been zero.

AMMi does not update the Q-values for the higher bid, since they do not know whether
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setting a higher bid would have led to a buy.

q̂d+1
i (βk) = q̂di (βk), for βk > βj , (34)

q̂d+1
i (βl) = (1− λd

i )q̂
d
i (βl), for βl ≤ βj . (35)
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B Additional Results

B.1 Lower Initial Q-values

In Section 6, we considered an “optimistic” distribution of initial Q-values, i.e., the initial Q-

values were initialized on a uniform distribution over [5, 8]. For this section, we initialize using

positive but lower initial Q-values, namely, a uniform distribution over [0.01, 0.05]. All other

parameters are as listed in Table 1. We find no significant difference between the results below

and those discussed in Section 6.

The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers to
the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and red shaded bands
represent the 90% range across the simulations for the ask and bid, respectively. The dashed lines plot the
competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes in the final
day are 102 and 98, respectively.

Figure B1: Lower Initial Q-values - Mean Market Quotes Over Days

42



(a) Ask (b) Bid

The graph shows the distribution of best ask quotes across the 1,000 repetitions in the final day for both the
ask and bid quotes. The graph refers to the baseline Q-learning setup.

Figure B2: Lower Initial Q-values - Distribution of AMM Quotes in d = D = 1, 000, 000

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure B3: Lower Initial Q-values - Final Mean Q-Tables

43



B.2 Varying the Learning Rate

The distributions in Figures B4 and B5, and the Final Mean Q-Tables in Figures B6, B7, and

B8 help to show the difference with the baseline case. The distribution of asks in the the

final day has a mass below vH and that of bid prices above vL, in contrast with the baseline

case. The mean Q-values are now positive even for ask prices below 102. Whilst, on average,

the highest Q-value is still attached to an ask price of 102, there are simulations in which the

highest Q-value is attached to a price below this; thus, in these simulations, the greedy action

was below 102.

(a) λd
i = 0.001 (b) λd

i = 0.01

(c) λd
i = 0.05 (d) λd

i = 0.1(∗)
Each panel shows the distribution of the market ask quotes across the 1,000 repetitions in the final day, for
a given value of λd

i . The graph refers to the baseline Q-learning setup. The “(*)” refers to the baseline
parameterization that we considered in Section 6

Figure B4: λd
i Comparative Statics - Distribution of Market Ask Prices in Day d = 1,000,000
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(a) λd
i = 0.001 (b) λd

i = 0.01

(c) λd
i = 0.05 (d) λd

i = 0.1(∗)
Each panel shows the distribution of the market ask quotes across the 1,000 repetitions in the final day, for
a given value of λi. The graph refers to the baseline Q-learning setup. The “(*)” refers to the baseline
parameterization that we considered in Section 6

Figure B5: λd
i Comparative Statics - Distribution of Market Bid Prices in Day d = 1,000,000
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(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup. The graph refers to the baseline Q-learning setup.

Figure B6: λd
i = 0.001 - Final Mean Q-Tables

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure B7: λd
i = 0.01 - Final Mean Q-Tables
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(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure B8: λd
i = 0.05 - Final Mean Q-Tables
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B.3 Varying the Minimum Exploration Probability

Below, we present the market ask and bid distributions in the final day for the values of ci

considered in Section 7.2.

(a) ci = 0 (*) (b) ci = 0.01 (c) ci = 0.05

(d) ci = 0.10 (e) ci = 0.20 (f) ci = 0.50

Each panel shows the distribution of the market ask quotes across the 1,000 repetitions in the final day, for
a given value of ci. The graph refers to the baseline Q-learning setup. The “(*)” refers to the baseline
parameterization that we considered in Section 6.

Figure B9: ci Comparative Statics - Distribution of Market Ask Prices in Day d = 1,000,000
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(a) ci = 0 (*) (b) ci = 0.01 (c) ci = 0.05

(d) ci = 0.10 (e) ci = 0.20 (f) ci = 0.50

Each panel shows the distribution of the market bid quotes across the 1,000 repetitions in the final day, for
a given value of ci. The graph refers to the baseline Q-learning setup. The “(*)” refers to the baseline
parameterization that we considered in Section 6.

Figure B10: ci Comparative Statics - Distribution of Market Bid Prices in Day d = 1,000,000
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B.4 Varying the Exploration Decay Rate

Figure B11 shows the market quotes over days, with each subplot representing a different value

of γi. For a larger γi, we see that the simulations reach the result at an accelerated speed; as we

decrease γi towards zero, we see that the time taken for the simulations to reach ask prices of

102 and bid prices of 98 increases. At the extreme of our considered values (γi = 2.5×10−6), we

see that, whilst the final ask and bid quotes are 101.68 and 98.33, respectively, no convergence

has been reached and the prices are still trending upwards. Figures B12 and B13 plot market

ask and bid distributions in the final day for the various values of γi.

(a) γi = 1× 10−4 (b) γi = 4× 10−5 (*) (c) γi = 2× 10−5

(d) γi = 1× 10−5 (e) γi = 5× 10−6 (f) γi = 2.5× 10−6

Each panel, for a given value of γi, plots the mean market quotes over days, averaging across the 1,000
repetitions. The graph refers to the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line;
the blue and red shaded bands represent the 90% range across the simulations for the ask and bid, respectively.
The dashed lines plot the competitive ask and bid prices, as discussed in Section 3. The “(*)” refers to the
baseline parameterization that we considered in Section 6. The mean market ask (bid) quotes in the final day
are as follows: γi = 1× 10−4 — 102 (98); γi = 1× 10−5 — 102 (98); γi = 2× 10−5 — 102 (98); γi = 4× 10−5

— 102 (98); γi = 5× 10−6 — 101.95 (98.05); γi = 2.5× 10−6 — 101.68 (98.33).

Figure B11: γi Comparative Statics - Mean Market Quotes Over Days
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(a) γi = 1× 10−4 (b) γi = 4× 10−5 (*) (c) γi = 2× 10−5

(d) γi = 1× 10−5 (e) γi = 5× 10−6 (f) γi = 2.5× 10−6

Each panel shows the distribution of the market ask quotes across the 1,000 repetitions in the final day, for
a given value of γi. The graph refers to the baseline Q-learning setup. The “(*)” refers to the baseline
parameterization that we considered in Section 6

Figure B12: γi Comparative Statics - Distribution of Market Ask Prices in Day d = 1,000,000
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(a) γi = 1× 10−4 (b) γi = 4× 10−5 (*) (c) γi = 2× 10−5

(d) γi = 1× 10−5 (e) γi = 5× 10−6 (f) γi = 2.5× 10−6

Each panel shows the distribution of the market bid quotes across the 1,000 repetitions in the final day, for
a given value of γi. The graph refers to the baseline Q-learning setup. The “(*)” refers to the baseline
parameterization that we considered in Section 6

Figure B13: γi Comparative Statics - Distribution of Market Bid Prices in Day d = 1,000,000

52



B.5 Soft-max Exploration

(a) Ask (b) Bid

The graph shows the distribution of best ask quotes across the 1,000 repetitions in the final day for both the
ask and bid quotes. The graph refers to the baseline Q-learning setup.

Figure B14: Soft-max Exploration - Distribution of AMM Quotes in d = D = 1, 000, 000

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure B15: Soft-max Exploration - Final Mean Q-Tables
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B.6 Counterfactual Updating: Fixed-price Market Maker

In this section, we consider how a single AMM, now using counterfactual updating, responds

to a “human” market maker quoting fixed ask and bid prices of 101 and 99, respectively.

(a) Ask (b) Bid

The graph shows the distribution of the ask and bid quotes set by the AMM in the final day, across the 1,000
repetitions. The graph refers to the counterfactual-updating Q-learning setup.

Figure B16: Counterfactual Updating, Fixed-price Market Maker - Distribution of AMMQuotes
in d = D = 1, 000, 000

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the counterfactual-updating Q-learning setup.

Figure B17: Counterfactual Updating, Fixed-price Market Maker - Final Mean Q-Tables
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B.7 Decoupled Updating

In this section, we consider a variation of the updating rule in which the Q-values are only

updated when there is a trade on that side of the market. That is, the ask Q-values are only

updated if the trader buys the asset from the AMM; the bid Q-values are only updated if the

trader sells the asset to the AMM.

B.7.1 Standard

If market maker i chooses ask adi = αj and bid price bdi = βk, then these are updated as follows:

qd+1
i (αj) = λd

i

((
αj − vd

)
1{Φd

i=−1}

)
+
(
1− λd

i

)
qdi (αj), if Xd = 1, (36)

qd+1
i (αj) = qdi (αj), otherwise, (37)

q̂d+1
i (βk) = λd

i

((
vd − βk

)
1{Φd

i=1}

)
+
(
1− λd

i

)
q̂di (βk), if Xd = −1, (38)

q̂d+1
i (βk) = q̂di (βk), otherwise. (39)

For all other (i.e., unchosen) ask prices αl (l ̸= j) and bid prices βm (m ̸= k), the Q-values are

unchanged:

qd+1
i (αl) = qdi (αl), (40)

q̂d+1
i (βm) = q̂di (βm). (41)
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The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers to
the baseline Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and red shaded bands
represent the 90% range across the simulations for the ask and bid, respectively. The dashed lines plot the
competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes in the final
day are 102.03 and 97.97, respectively.

Figure B18: Decoupled, Baseline - Mean Market Quotes Over Days
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(a) Ask Quotes (d =125,000) (b) Ask Quotes (d =250,000) (c) Ask Quotes (d =1,000,000)

(d) Bid Quotes (d =125,000) (e) Bid Quotes (d =250,000) (f) Bid Quotes (d =1,000,000)

The graph plots the distributions of market ask and bid prices across the 1,000 repetitions at different points
in the simulation: days 125,000, 250,000, and 1,000,000. The graph refers to the baseline Q-learning setup.

Figure B19: Decoupled, Baseline – Distributions of Market Ask and Bid Quotes over Time

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the baseline Q-learning setup.

Figure B20: Decoupled, Baseline - Final Mean Q-Tables
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B.7.2 Counterfactual Updating

The counterfactual updating in the decoupled version follows the same logic as described in

Section 8, but with the same conditions on the updating as described in B.7.1. The ask Q-

values are only updated when Xd = 1 and the bid Q-values are only updated when Xd = −1,

otherwise the Q-values on that side of the market are left unchanged.

Below we present the results for the counterfactual weighting of ρ = 1.

The graph plots the mean market quotes over days, averaging across the 1,000 repetitions. The graph refers
to the counterfactual-updating Q-learning setup. The mean ask (bid) is the dark blue (red) line; the blue and
red shaded bands represent the 90% range across the simulations for the ask and bid, respectively. The dashed
lines plot the competitive ask and bid prices, as discussed in Section 3. The mean market ask and bid quotes
in the final day are 100.86 and 99.13, respectively.

Figure B21: Decoupled, Counterfactual Updating - Mean Market Quotes Over Days
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(a) Ask Quotes (d =125,000) (b) Ask Quotes (d =250,000) (c) Ask Quotes (d =1,000,000)

(d) Bid Quotes (d =125,000) (e) Bid Quotes (d =250,000) (f) Bid Quotes (d =1,000,000)

The graph plots the distributions of market ask and bid prices across the 1,000 repetitions at different points
in the simulation: days 125,000, 250,000, and 1,000,000. The graph refers to the counterfactual-updating
Q-learning setup.

Figure B22: Decoupled, Counterfactual Updating – Distributions of Market Ask and Bid Quotes
over Time

(a) Ask Q-Table (b) Bid Q-Table

The graph plots the mean ask and bid Q-tables at the end of the simulations, averaging across the 1,000
repetitions. It shows the Q-tables for only a subset of prices, centered around the final mean prices. The graph
refers to the counterfactual-updating Q-learning setup.

Figure B23: Decoupled, Counterfactual Updating - Final Mean Q-Tables
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